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Goal
Fast infrasound amplitude 
predictor
⇒ Transmission loss for 
any range-dependent 
atmospheric model
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Ground-truth dataset

• Massive PE simulations (NCPA ePape)

• Range-dependent:  
ERA5 & NRLMSIS-00/HWM13

• Randomization:
• Slice locations
• Time
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Challenges with existing inversion framework
Full-waveform modeling: computationally expensive

⇒ inversions typically using empirical regression equations (Le Pichon, 2012, referred in the following: LP12)

LP12 optimized over an idealized set of Parabolic Equation (PE) simulations
⇒ TL as function of range

Neglects vertically and horizontally varying wind profiles

Effective velocity ratio @ 50 
km altitude

Source frequency
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LP 12 regression equation:
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Generating models allowing for fast TL estimation

Range-dependent analytical model
Machine learning

• Full control of predictive model parameters 
• Explainability
• Simplicity

• Limited generalization for new data
• Difficult to introduce complexity in mapping function

• Mapping with arbitrary 
complexity

• High accuracy

• “Black box”
• Costly training
• Tricky architecture 

optimization

S51A-01
presented 

by Alexis 
Le Pichon
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Analytical fitting approach Machine Learning (ML)

2 main computationally inexpensive approaches 
to incorporate atmospheric variability into fast TL estimation:

S51A-04 
current 
paper



Creating a realistic Transmission-Loss dataset

• Similar to LP12: 
generate synthetic dataset from 
PE simulations (NCPA ePape)

• Atmospheric range-dependent
models: 
ERA5 & NRLMSIS-00/HWM13

Accurate ML model requires training over a dataset representative of the variability in winds and TLs

Randomly sample:
• Slice locations
• Year
• Day
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Learning TL from wind patterns using CNNs

Convolutional Neural Networks (CNNs)
• Designed to extract local and global patterns.

Several layers of convolutions with custom filters for 
prediction

• Here: TL from multi-dimensional input (2D wind maps)

Our approach
(1) extract wind patterns using 2D CNN
(2) find frequency-dependent TL relationship with 

wind models using a Fully-Connected layer 

Small and large-scale wind variations + frequency control the acoustic wavefield structure at the ground
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Training & validation
Training (75%)  /  validation (25%)

Training the ML using mini-batches (size 64)
⇒ 5 dB average accuracy over testing dataset

Once trained, 
an ML-based TL estimate takes 0.05 s
(vs. 10 to 150 s with PE simulations)
Frequency-independent cost

Uncertainty estimation:
Computing error vs. range made by the ML model 
over the testing dataset

7



Resulting model

ML captures main features:

• Multiple stratospheric shadow 
zones

• Tropospheric & thermospheric 
phases

• Low vs. high effective sound speed 
ratio

• Error within ∼ 5 dB
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Perspectives
ML-based inexpensive (0.05 s) & accurate (around 5 dB)  alternative to full simulations

Currently:  range-independent Gardner perturbations 
⇒ unrealistic beyond a few 100km  ⇒ Range-dependent to be incorporated

E.g., microbarom modeling:   greater propagation range (4000 – 6000 km). 
⇒ new large-scale simulations to get new ground-truth & training

Enables rapid & efficient amplitude-based inversion procedures to retrieve source parameters 
(e.g., explosion yield, ground pressure levels)

Explainable ML, e.g., Layer-wise Relevance Propagation (LRP)
⇒ relationship between specific atmospheric model regions & TL ⇒ sensitivity kernels
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Plenty of applications benefitting from rapid TL estimates,
(near-) realtime atmospheric model diagnostics, event characterization, ++

Ground truth from even more expensive & accurate codes (spectral-element / nonlinear propagation / … ), 
e.g., taking cross-winds into account ++

Future work: 

Code & synthetic data to be made available:   https://github.com/QuentinBrissaud
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Thank you! 



ML vs. LP12

LP12 reproduces the main features
• First stratospheric shadow zone
• Low vs. high effective sound speed ratio
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Infrasound to retrieve source parameters
Infrasound excited by surface sources can travel large distances and carry information about the source, 
e.g., surface pressure at the source after the 2016 Amatrice earthquake

Reconstructed & measured 
surface pressure

(left) Backprojected infrasound (SPL, dB)

(right) Acoustic peak surface pressure 
(PSP, in dB); triangle = seismic 
station. 

Hernandez, B., Le Pichon, et al. (2018). Estimating the Ground-Motion 
Distribution of the 2016 M w 6.2 Amatrice, Italy, Earthquake Using 
Remote Infrasound Observations. Seismological Research Letters, 89(6), 
2227-2236.

Accurate estimation of Transmission-Loss (TL), i.e., infrasound amplitude decay with distance
⇒ opportunity to complement seismic data with acoustic data for remote sensing of surface processes
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