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Objective: Avoid running costly simulations: 
Have “table lookup” using the atmospheric specification
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Methodology
1) Massive simulated TL dataset from range-dependent 

atmospheric ERA5 specifications
2) Train a neural net to learn TL from atmospheric models & synthetics
⇒ Get TL almost instantaneously

Motivations 
• Long-range transmission loss (TL) useful: 

Explosive source characterization & location, & beyond
• Simulations: expensive, especially at high frequency
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Existing rapid TL framework (Le Pichon et al. 2012, LP12)

• Empirical regression TL equations fit to idealized 
Parabolic Equation (PE) simulations, 
neglecting atmospheric range-dependency

• Low complexity & impressingly robust 

Effective velocity ratio 
@ 50 km altitude

Frequency
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Recent rapid TL estimation enhancements

Range-dependent analytical model

• Full control of model parameters 

• Explainability

• Simplicity

• Limited generalization

• Difficult to introduce complexity in 
mapping function

• Arbitrary complexity

• Higher accuracy

• “Black box”

• Costly training

• Tricky architecture 
optimization

Le Pichon
et al. in 

preparation

Analytical fitting Machine Learning (ML)

Current 
study
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NORSAR internal
proof of concept

Student internship
Edouard Forestier, ENSTA Paris
Better accuracy & longer range

Paper submissionEarly
2022

2021

Spring
2022

2023 Open-source code / data release
& beyond



Synthetic ground-truth
• ML: requires training over data with representative wind & TL variability

• PE datasets:

1) Proof of concept (Brissaud et al., 2023): 1 000 km w/ range-independent gravity-wave perturbations
2) Longer range (Forestier et al., 2022): 4 000 km w/ range-dependent gravity-waves
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Characteristics

● NCPA ePape PE code

● Range-dependent atmosphere: 
ERA5 re-analysis & NRLMSIS-00 / HWM14

● Gardner-type gravity-wave perturbations

● Slices sampled randomly in location & time

● Random input frequencies 0.1–3.2 Hz

Brissaud et al. (2022) dataset



CNN: learning to get TL from wind models & wave frequency

1) Input: 2-D distance vs altitude wind

2) Condense wind patterns w/ 2-D Convolutional Neural Networks (CNN)

3) Frequency-dependent TL relation with wind: from additional neural net

4) Output: TL as function of range
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Training & validation

Characteristics

● 42 000 simulations. 
Training (75%) & validation

● Mini-batches (size 64)

● Early stopping
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Results

● 5 dB average accuracy

● 0.05 s computation 
(10﹣150 s PE simulations 
for high freq.)



Reproduces main propagation features

• Stratospheric shadow zone

• Low vs. high effective sound speed 
ratio
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Recurrent Neural Network (RNN) approach
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● 2-D CNN ignores “spatial causality”, 
wind beyond a range should not influence TL at 
closer ranges

● Incorporating causality, 
informing about physics, ⇒ enhanced learning 

● Recurrent Neural Networks: 
Good for learning causality in sequential data 
Involves feedback (à la IIR)

● Use 1-D CNN + Gated Recurrent Units (GRUs) 
as RNN, building “spatially causal” framework

Edouard Forestier
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CNN

RNN

Shadow zone

Comparisons

Asymptotic 
behaviour



Perspectives

● Explainable ML, e.g., Layer-wise Relevance Propagation
⇒ relations between atmospheric model regions & TL 
⇒ sensitivity kernels

● ERA5: ensemble allowing for probabilistic simulations & uncertainty propagation

● Building stochastic models for propagation

● Compose full-waveform or Green’s function from multi-frequency complex-valued ML-based TL
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● Inexpensive (0.05 s) & accurate (～ 5 dB) alternative to PE

● Plenty of applications benefitting from rapid TL estimate, (near-) realtime atmospheric 
model diagnostics, microbarom propagation, event analysis, …

● Rapid amplitude-based inversion ⇒ source parameters (e.g., yield, ground pressure level)

● How accurate do we need to be? Must consider the atmospheric model uncertainty context

Ambitions
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Credit where credit is due for hands-on coding & analyses
● Edouard Forestier
● Quentin Brissaud
● Antoine Turquet

Funding making this work possible
● NORSAR internal research funding

● Research Council of Norway FRIPRO/FRINATEK basic research contract 
274377: 
Middle Atmosphere Dynamics: Exploiting Infrasound Using a 
Multidisciplinary Approach at High Latitudes (MADEIRA)

Thank you Claus Hetzer & the ncpaprop team for the open PE code!
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Thanks for the attention

Happy to get your feedback!

Image by Jwp1234 - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=20766387
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Extra slides →
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Gated Recurrent Units, GRUs

• "Compute a bad TL" & improve, reading 
the wind profile range-by-range

• GRU computes a 4 000 km TL with the 
wind profile at range 0 

• Then: update the 4 000 km TL, looking at 
wind profile at range 1, and so on



Resulting model

ML captures main features:

• Multiple stratospheric shadow 
zones

• Tropospheric & thermospheric 
phases

• Low vs. high effective sound speed 
ratio

• Error within ∼ 5 dB
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Goal  
Fast infrasound amplitude 
predictor
⇒ Transmission loss for 
any range-dependent 
atmospheric model
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Ground-truth dataset

• Massive PE simulations (NCPA ePape)

• Range-dependent:  
ERA5 & NRLMSIS-00/HWM14

• Randomization:

• Slice locations

• Time



Infrasound to retrieve source parameters
Infrasound excited by surface sources can travel large distances & carry information about the source, 
e.g., surface pressure at the source after the 2016 Amatrice earthquake

Reconstructed & measured 
surface pressure

(left) Backprojected infrasound (SPL, dB)

(right) Acoustic peak surface pressure 
(PSP, in dB); triangle = seismic 
station. 

Hernandez, B., Le Pichon, et al. (2018). Estimating the Ground-Motion 
Distribution of the 2016 M w 6.2 Amatrice, Italy, Earthquake Using 
Remote Infrasound Observations. Seismological Research Letters, 89(6), 
2227-2236.

Accurate estimation of Transmission-Loss (TL), i.e., infrasound amplitude decay with distance
⇒ opportunity to complement seismic data with acoustic data for remote sensing of surface processes
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RNN

(Gated Recurrent Unit)
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Errors RNN
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Without stacked GRUs
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Without stacked GRUs


