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Motivations

● Surface waves (SW) are a known source of strong 
shaking in sedimentary basins 

● There are three main approaches to study the basin 
response to SW
1/ Analytical models – Inexpensive but oversimplified
2/ Numerical simu. – Accurate but expensive 
3/ Real observations – limited good-quality 

dataset, many different phenomena involved 

● Therefore, correlations between SW amplification and 
basin properties are poorly constrained Figure: From (Tsai et al, 2017) 

Vertical ampl. at station OSKH02 
relative to OSKH04 from the 
Tohoku-Oki earthquake

● Machine learning provides an inexpensive solution
that accounts for nonlinear correlations between inputs and outputs
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Objectives

We train a Random forest (RF) to learn Rayleigh-wave amplification 
spectra for a given set of basin parameters:
➢ good generalization of training data
➢ provide insights about the feature importance
➢ limited hyper-parameter tuning

1.Can a machine-learning regression model accurately learn the nonlinear-
correlations between the amplification spectra and the basin properties 

2.How do machine-learning models perform to predict the Rayleigh-wave 
amplification using commonly-used proxies ?
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Dataset

● We pick basin parameters  in a 
reasonable range around empirical 
values
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● We generate a training dataset from axi-symmetric numerical 
simulations

● Shear-velocity variations with depth
follow power laws



5

Relative importance of basin parameters 

● We obtain 0.93 (vertical) and 0.94 (horizontal) in R2 accuracy using 
nondimensional basin parameters

● We train the RF to learn spectra over a normalized frequency range (Cadet, 
2012) f=[0.1f0; 1.9f0], where f0 is the Rayleigh-wave dominant freq.

● We only choose basin parameters that have a low Spearman’s 
score (S < 0.6)
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RF predictions in heterogeneous basins
● The main features of the amplification spectra in complex

structures can be captured by RF over a limited frequency range

Basin-shape-ratio : 0.45
Imp-contrast : 0.33
Power-basin : 0.3
Slope : 0.5
Poisson-basin : 0.4
Qs-basin : 9999.0
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Basin-geometry impact on the maximum amp. 

Imp-ratio : 6.46
Power-basin : 0.0
Poisson-basin : 0.24
Qs-basin : 9999.0

● The highest amplifications occur for small basin-edge angles and 
deep basins due to constructive interference between Rayleigh-wave 
modes close to the second basin edge.

● Basins with low basin-shape ratios lead to larger amplification in 
the near-field of the first basin edge

● Conclusions hold for the horizontal component

Vertical
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Basin-geometry impact on the maximum amp. 

● The horizontal amplification can be significantly increased in the 
shallower part of the basin owing to diffracted/converted waves at the 
basin discontinuity 

Basin-shape-r. : 4.83
Imp-ratio : 3.8
Power-basin : 0.0
Slope : 1.57
Slope-2 : 1.18
Poisson-basin : 0.24
Qs-basin : 9999.0

Vertical Horizontal



9

Performance of commonly-used proxies

● By training RF models with different sets of parameters we can 
compare the performance of commonly-used proxies to SW
amplification

Relative location in the basin

Frequency at max. H/V ratio 

Imp. ratio at depth h1500

Depth where Vs = 1.5 km/s

Depth where Vs = 2.5 km/s

Average Vs at depth h = 30 m

Depth where the Imp. Ratio > 1.5

Shear quality factor

● Most proxies used so far are not generally accessible at real sites. 
Instead, other proxies such as vs30 or h800, are used to infer the ground 
motion

Spearman’s matrix
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Performance of commonly-used proxies

● Note that performances are similar for the horizontal component

● Performances reach a plateau when the number of features exceeds 3 

● Relative location significantly increases the R2 accuracy 
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Conclusions

● Relative location within the basin can improve the performance of 
regression models

● A RF trained on synthetics provides an accurate regression model 
for simple basin structures to predict SW amplification. RF importance and 
performance metrics support previously-published results

● A RF trained over synthetics could improve the basin response to shallow
crustal events in ground-motion models

● We observe that amplification maxima  in a simple basin are 
strongly correlated to the basin-shape ratio and the basin-edge 
slope. By neglecting SW resonance and geometrical effects we might 
underpredict wave amplification.

● Normalizing spectra using a non-dimensional frequency greatly 
increases the accuracy when a strong basin discontinuity is present.
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Appendix
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Dataset
● Synthetics basin parameters are chosen in a reasonable 

range around values collected by (Chiou and Youngs, 2013), 
(Cipta, 2018) and (Zhu, 2018)

● Attenuation is computed from empirical model by (Graves 
and Pitarka 2010)

● Vp-Vs-Density relationships used are from (Brocher, 2005)
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RF Training to investigate proxy performance

● Various input features can be selected to train the RF. However, 
strongly-correlated features will: 1/ make the feature importance metric 
bias and 2/ Slow down the training process

● The performance of proxies with dimensionalized values (e.g. h1000, vs30) is 
frequency-dependent. Each discontinuity with depth impacts the RW 
spectrum over a specific freq. range (Brissaud and Tsai, 2019). If a proxy can
capture the discontinuity properties (e.g. depth, imp. Ratio) then the proxy
 will be efficient at predicting the amp. spectrum features.

● Performance is traditionally measured either as a variance reduction from 
a given initial model or a variance residual b/w the observed data and 
predicted data. Here we use the R2 metric, that corresponds to the % of 
variance explained by a model. R2 is independent of the amplification 
absolute value.

● There is a strong correlation between the frequency at maximum 
amp., the basin depth and the shear velocity above the basin main 
discontinuity. Using a non-dimensional frequency based on these correlations 
improves the regression model performance as pointed out by (Cadet, 2012) 
and facilitates comparisons b/w datasets.
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Appendix: Correlations for best proxies

ratio

● To study the significant correlations between the basin 
parameters and the SW amplification, we choose an input
feature set with the highest R2 score and lowest Spearman’s 
coefficient.

● Best set of non-correlated  
input features:

Spearman’s 
matrix

Basin-shape ratio
Imp. ratio at basin discontinuity
Power from shear-wave veloc.
power-law model
Basin-edge slope

Poisson’s ratio in the basin

● Note that these features are only
relevant for theoretical purposes
since they are usually not well-defined for real

basins
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Appendix: Correlations for common proxies

● We removed strongly-correlated features defined by a Spearman’s
coefficient > 0.7 (Jusoh, 2017) 

● We consider the following input features:

Relative location in the basin

Frequency at max. V/H ratio 

Imp. ratio at depth h1500

Depth where Vs = 1.5 km/s

Depth where Vs = 2.5 km/s

Vs at depth h = 30 m

Depth where the Imp. Ratio > 1.5

Shear quality factor

● H1000 and Vs10 have strong correlations with h1500 and Vs30
and are therefore not included



18

Appendix: Input cumulative distribution
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Appendix: Convergence tests
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Notes about the training data and the perf. comparison

● The performance comparison plots (bar plots) show the best combination of 
features, for a given number of input features. The performance over both the 
training and testing datasets are shown in order to see when the model 
overfits  (when the perf. of traning dataset is significantly larger than test 
dataset).

● The spectra are either computed over a “non-dimensional” freq.
range or a real freq. range. The non-dimensional freq. range 
is [0.3*fh; 1.7*fh] Hz, with fh the non-dimensional freq. such 
that fh = Vsh/(2.25*h) where Vsh is the shear velocity above
the main discontinuity and h the depth at which the basin is the
deepest. The real freq. Range is [0.01; 2.5] Hz

● The bar plots also show the average performance computed from
all the proxy combinations. It indicates whether or not any 
combination of features would have a good performance
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Notes about the feature importance

● The feature-importance score is an inherent metric of RF. 
Importance measures, for a set of independent input variables, 
the effect that a given input has on the output relatively to other 
inputs. If an input is important, changing its value alters the 
output values more significantly than changing other less 
important inputs.
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● There is a combination of basin-shape ratio and basin slope that leads to
global maximum at lower frequencies for a given Imp. ratio

● For a given Poisson’s ratio, the maximum amp. Location 
against basin-shape ratio and basin slope is independent 
of Imp. ratio.  

● The max. amp. does not monotonously increases with 
increasing Imp. Ratio because there is a
trade-off between freq. at max. amp. and
 basin-shape ratio

How does the basin geometry impacts the maximum amp. ?

VerticalAmplification is normalized
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● For given basin-shape ratio
and Imp. ratios, the max.
amplification tends to be
homogeneous for a given
loc. for the vertical comp.
and for a given power for 
the horizontal comp.

How do vertical and horizontal amplification differ ?

HorizontalVertical

● As pointed out earlier:  “The generally stronger fundamental-to-first horizontal 
trans. coef. might explain the larger importance of the power 
exponent.”

Amplification is normalized


