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Map of Osaka Basin
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Surface waves (SW) are a known source of strong
shaking in sedimentary basins

There are three main approaches to study the basin

response to SW Tokm
1/ Analytical models - Inexpensive but oversimplified 100 Vertical Ampification
2/ Numerical simu. - Accurate but expensive 40
3/ Real observations - limited good-quality " ] L
dataset, many different phenomena involved 4 A,n'mf"‘nff‘my,!”;‘.‘
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Therefore, correlations between SW amplification and 000 O quency () |
basin properties are poorly constrained Figure: From (Tsai et al, 2017)

Vertical ampl. at station OSKHO0?2
relative to OSKHO04 from the
Tohoku-Oki earthquake

Machine learning provides an inexpensive solution
that accounts for nonlinear correlations between inputs and outputs
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1.Can a machine-learning regression model accurately learn the nonlinear-
correlations between the amplification spectra and the basin properties

2.How do machine-learning models perform to predict the Rayleigh-wave
amplification using commonly-used proxies ?

We train a Random forest (RF) to learn Rayleigh-wave amplification
spectra for a given set of basin parameters:

» good generalization of training data

~ provide insights about the feature importance

> limited hyper-parameter tuning .
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 We generate a training dataset from axi-symmetric numerical

simulations
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Relative importance of basin parameters

 We train the RF to learn spectra over a normalized frequency range (Cadet,
2012) f=[0.1fo; 1.9fo], where fo is the Rayleigh-wave dominant freq.

« We only choose basin parameters that have a low Spearman’s

score

(S < 0.6)

 We obtain 0.93 (vertical) and 0.94 (horizontal) in R2 accuracy using

nondimensional basin parameters

Loc

Imp-ratio
Poisson-basin
Basin-shape-ratio
Power-basin
Slope

Qs-basin
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Feature importance
Vertical component - Normalized frequencies
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Feature importance
Horizontal component - Normalized frequencies
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RF predictions in heterogeneous basins

« The main features of the amplification spectra in complex
structures can be captured by RF over a limited frequency range
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Basin-geometry impact on the maximum amp.

 The highest amplifications occur for small basin-edge angles and
deep basins due to constructive interference between Rayleigh-wave

modes close to the second basin edge.

 Basins with low basin-shape ratios lead to larger amplification in
the near-field of the first basin edge

e Conclusions hold for the horizontal component

Vertical

Imp-ratio : 6.46
Power-basin : 0.0
Poisson-basin : 0.24
Qs-basin : 9999.0
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Basin-geometry impact on the maximum amp.

- The horizontal amplification can be significantly increased in the
shallower part of the basin owing to diffracted/converted waves at the

basin discontinuity

Basin-shape-r. : 4.83
Imp-ratio : 3.8
Power-basin : 0.0
Slope : 1.57
Slope-2:1.18
Poisson-basin : 0.24
Qs-basin : 9999.0
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Performance of commonly-used proxies

 Most proxies used so far are not generally accessible at real sites.
Instead, other proxies such as vs30 or h800, are used to infer the ground
motion

By training RF models with different sets of parameters we can
compare the performance of commonly-used proxies to SW
amplification

Spearman’s matrix
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Performance of commonly-used proxies

Relative location significantly increases the R2 accuracy

Performances reach a plateau when the number of features exceeds 3

Note that performances are similar for the horizontal component

Performance of commonly-used proxies for
Vertical component - Normalized frequencies
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Conclusions

A RF trained on synthetics provides an accurate regression model
for simple basin structures to predict SW amplification. RF importance and
performance metrics support previously-published results

- We observe that amplification maxima in a simple basin are
strongly correlated to the basin-shape ratio and the basin-edge

slope. By neglecting SW resonance and geometrical effects we might
underpredict wave amplification.

* Normalizing spectra using a non-dimensional frequency greatly
increases the accuracy when a strong basin discontinuity is present.

* Relative location within the basin can improve the performance of
regression models

A RF trained over synthetics could improve the basin response to shallow
crustal events in ground-motion models
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 Synthetics basin parameters are chosen in a reasonable

range around values collected by (Chiou and Youngs, 2013),
(Clpta’ 2018) and (Zhu’ 2018\ Data extracted from (Chiou, 2013)
and (Cipta, 2018) Data extracted from (Zhu, 2018)
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 Attenuation is computed from empirical model by (Graves
and Pitarka 2010)

* Vp-Vs-Density relationships used are from (Brocher, 2005)
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RF Training to investigate proxy performance

 The performance of proxies with dimensionalized values (e.g. h1000, vs30) is
frequency-dependent. Each discontinuity with depth impacts the RW
spectrum over a specific freq. range (Brissaud and Tsai, 2019). If a proxy can
capture the discontinuity properties (e.g. depth, imp. Ratio) then the proxy
will be efficient at predicting the amp. spectrum features.

 There is a strong correlation between the frequency at maximum
amp., the basin depth and the shear velocity above the basin main
discontinuity. Using a non-dimensional frequency based on these correlations
improves the regression model performance as pointed out by (Cadet, 2012)
and facilitates comparisons b/w datasets.

« Various input features can be selected to train the RF. However,
strongly-correlated features will: 1/ make the feature importance metric
bias and 2/ Slow down the training process

* Performance is traditionally measured either as a variance reduction from
a given initial model or a variance residual b/w the observed data and
predicted data. Here we use the R2 metric, that corresponds to the % of

variance explained by a model. R2 is independent of the amplification
absolute value.
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Appendix: Correlations for best proxies

« To study the significant correlations between the basin
parameters and the SW amplification, we choose an input
feature set with the highest R2 score and lowest Spearman’s

coefficient.

 Best set of non-correlated
input features:

Basin-shape ratio <

Imp. ratio at basin discontinuity _
Power from shear-wave veloc.
power-law model <

Basin-edge slope <«
Poisson’s ratio in the basin «———

* Note that these features are only
relevant for theoretical purposes

since they are usually not well-defined for rea
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Appendix: Correlations for common proxies

« We removed strongly-correlated features defined by a Spearman’s
coefficient > 0.7 (Jusoh, 2017)

 We consider the following input features:
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« H1000 and Vs10 have strong correlations with h1500 and Vs30
and are therefore not included
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Appendix: Input cumulative distribution

Cumulative distribution Cumulative distribution Cumulative distribution
1.0 L0 1.0

0.8 //— 0.8 /

e 0.8

0.6 / 0.6 // . ——/

1/ ) B

0.4

0.2 0.2 /

0.0 J 0.0 0.2 —

0.0 0.2 0.4 0.6 0.8 0.0 02 04 0.6 0.8 L0 0.4 0.6 0.8 10 1.2 L4 L6
Basin-shane-ratio Loc Slope
Cumulative distribution Cumulative distribution Cumulative distribution

1.0

10 /J'—’ L0 T r

0.8 - 0.8 0.8 —

0.6 / 0.6 / et /
0.4 /J/ 0.4 [/ : /
0.2 / 0.2 Jf N

d
0.0 0.0

0.2 0.4 0.6 0.8 020 025 030 035 040 045 0-0 0.1 0.2 0.3 0.4
Imp-contrast Poisson-basin Power-basin

Cumulative distribution

1.0

0.8

_—

0.6

ol

0.2

0.0

0 2000 4000 6000 8000 10000
Qs-basin

caltech.edu 18 Ca I tec



Appendix: Convergence tests
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Notes about the training data and the perf. comp

 The spectra are either computed over a “non-dimensional” fre
range or a real freqg. range. The non-dimensional freq. ran
is [0.3*fh; 1.7*fh] Hz, with fh the non-dimensional freq. suc
that fh = Vsh/(2.25*h) where Vsh is the shear velocity above
the main discontinuity and h the depth at which the basin st
deepest. The real freq. Range is [0.01; 2.5] Hz

 The performance comparison plots (bar plots) show the best ¢
features, for a given number of input features. The perfol
training and testing datasets are shown in order to see when |
overfits (when the perf. of traning dataset is significantly larg
dataset).

 The bar plots also show the average performance computed f
all the proxy combinations. It indicates whether or not any
combination of features would have a good performance
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Notes about the feature importance

* The feature-importance score is an inherent metric of RF.
Importance measures, for a set of independent input variables
the effect that a given input has on the output relatively to oth
inputs. If an input is important, changing its value alters the
output values more significantly than changing other less
important inputs.
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How does the basin geometry impacts the maxi

 There is a combination of basin-shape ratio and basin slope
global maximum at lower frequencies for a given Imp. ratio

Amplification is normaliz&drtical
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Slope Slape Slape

* For a given Poisson’s ratio, the maximum amp
against basin-shape ratio and basin slope is in
of Imp. ratio.
« The max. amp. does not monotonously increas
1ﬁ Increasing Imp. Ratio because there is a
trade-off between freq. at maXx. a@alﬁel.':h
basin-shape ratio




How do vertical and horizontal amplification diffe

Amplification is normalized

- For given basin-shape ratio  \/ertical Horizontal

and Imp. ratios, the max.

am p|lﬁcatIO N tendS tO be U.'/:J\zmpliﬁcﬂ-ti(m (max) - max = 1.73 0 Uﬁzmpliﬁca.tion (max) - max = 2.36 0
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« As pointed out earlier: “The generally stronger fundamental-to-first horizontal
trans. coef. might explain the larger importance of the power

exponent.”
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