Extracting the truth about the war in Ukraine

Ben Dando Head of Department – Test Ban Treaty Verification

Presentation, Polyteknisk forening, November 2022



About NORSAR

- Independent research institute established in 1968
- We are the Norwegian National Data Centre for the Comprehensive Nuclear Test Ban Treaty supporting Norway's effort to stop the testing of nuclear bombs
- Expertise in seismic and infrasound monitoring

The

Ininu

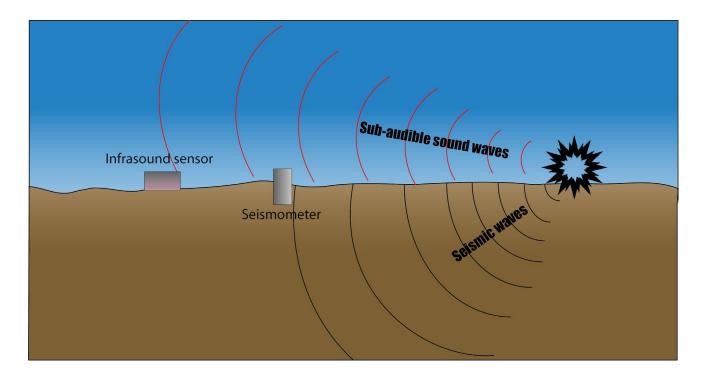
How can technology help?

- Where, when, and what happened (and by whom)
- Provide objective data free from (subjective) bias
- Verify personal/anecdotal accounts

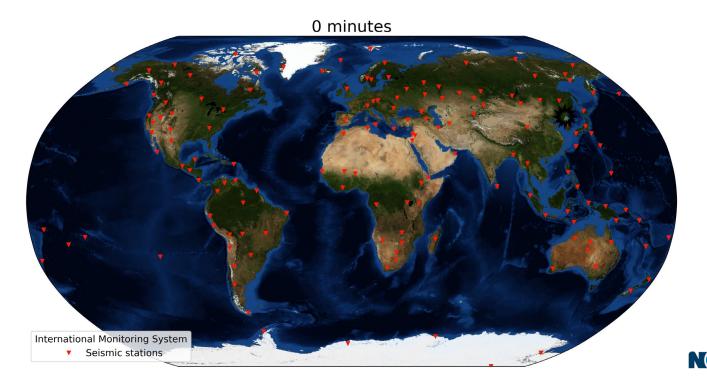
Some existing technologies:

- Satellite imagery
- Videos
- Photographs
- Artificial Intelligence analysis (e.g. of social media)

What about seismic and infrasound monitoring?



Source: Maxar Technologies


Energy propagation from an explosion

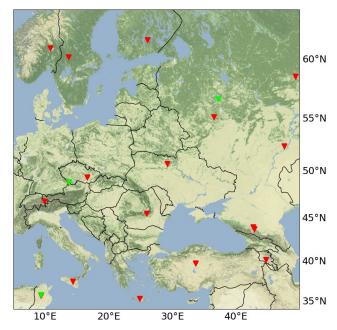
Detecting nuclear explosions

Seismic stations in the International Monitoring System (IMS) of the Comprehensive Nuclear Test Ban Treaty Organisation (CTBTO)

Nuclear test-ban monitoring to conflict monitoring

- Military sized explosions are significantly smaller than nuclear tests
- Detection of smaller explosions requires nearby sensors
- Locating explosions (or earthquakes) requires signals from multiple sensors

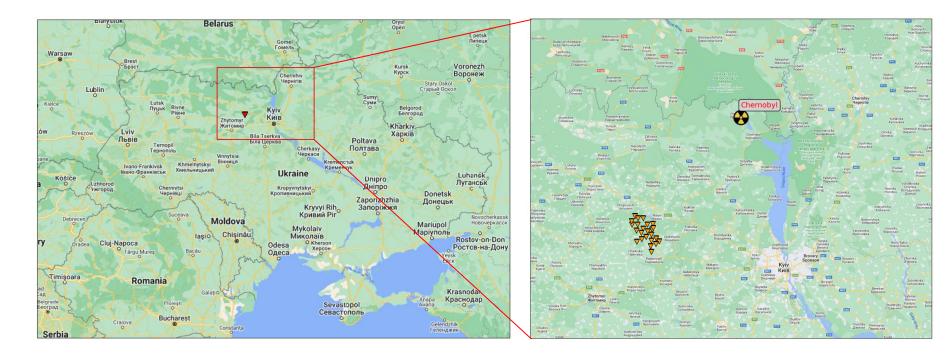
Explosion type	Explosive yield - TNT equivalent
Typical rocket propelled grenade	~0.001 tonnes (1 kg)
Nordstream pipeline explosions (2022)	<mark>~0.2 tonnes (200 kg)</mark>
Tomahawk cruise missile	<mark>~0.5 tonnes (500 kg)</mark>
Oslo terrorist attack (2011)	~0.9 tonnes (950 kg)
Oklahoma City bomb (1995)	~1.8 tonnes (1800 kg)
First North Korean nuclear test (2006)	~500 tonnes (0.5 kt)
Hiroshima bomb (1946)	<mark>~15 000 tonnes (15 kt)</mark>
Last North Korea nuclear test (2017)	~200 000 tonnes (200-300 kt)



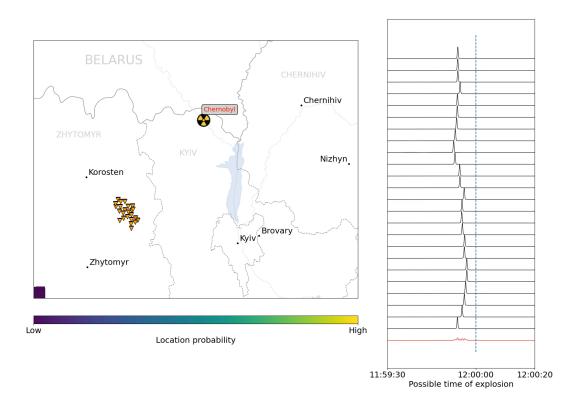
Monitoring Ukraine using the IMS

- Stations from the International Monitoring System (IMS) (seismic & infrasound) around Ukraine
- Will **reliably** detect explosions (seismically) with magnitudes > 2.8-3.0
- Equivalent of ~60-101 tonnes TNT (i.e. very large explosions)

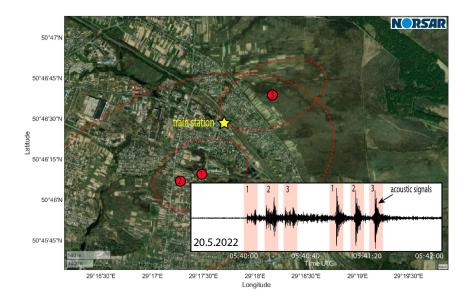
Reference event	Explosive yield - TNT equivalent
Typical rocket propelled grenade	~0.001 tonnes (1 kg)
Nordstream pipeline explosions (2022)	∼ 0.2 tonnes (200 kg)
Tomahawk cruise missile	∼ 0.5 tonnes (500 kg)
Oslo terrorist attack (2011)	~0.9 tonnes (950 kg)
Oklahoma City bomb (1995)	∼ 1.8 tonnes (1800 kg)
First North Korean nuclear test (2006)	~500 tonnes (0.5 kt)
Hiroshima bomb (1946)	~15 000 tonnes (15 kt)


IMS stations around Ukraine

The Malin seismic array



Real-time monitoring of Kyiv region


- Data continuously transferred
 to NORSAR
- Processed automatically
- Can detect small explosions close to the seismic array
- Less precise at greater distances

Example: Malyn train station attack

- 20th May 2022 Russian attack on Malyn train station at 05:40 UTC
- NORSAR's automatic detectors alerted us within 15 minutes of the attack
 - Data transferred to Norway
 - Automatically processed
 - Alert sent out
- 3 explosions within 25 seconds
- Magnitude 0.8 (~300 kg TNT)
- Attack reported by Mayor at 09:37 UTC – four hours later

Example: Malyn train station attack

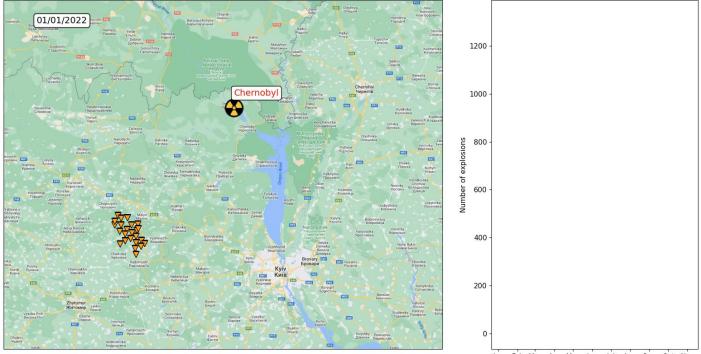
From Al Jazeera:

"The mayor of Malyn, Oleksandr Sytaylo, announced in a video message that day that about 100 houses near the station had been damaged. **The Malyn attack and others are being investigated as possible war crimes**.

The attack had left a large crater, about four metres deep and eight metres wide (13 by 26 feet....

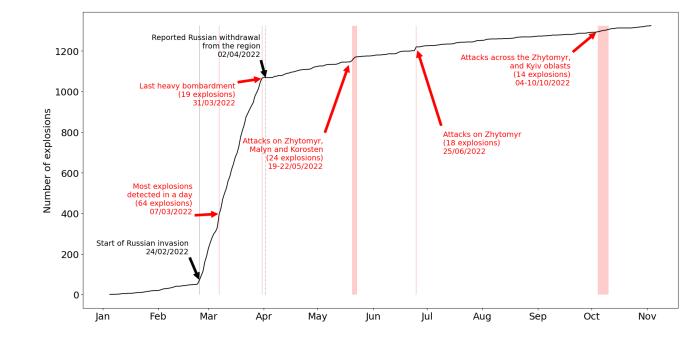
...Russia claimed they had hit a large delivery of weapons from the United States and Europe in the attack.

According to [Kulish], there was no weapons delivery, "only a civilian train full of civilians parked here before the missile attack".



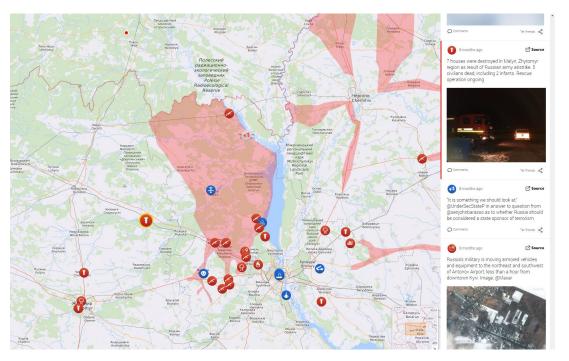
Source: Nils Adler/Al Jazeera

Detecting explosions around Kyiv



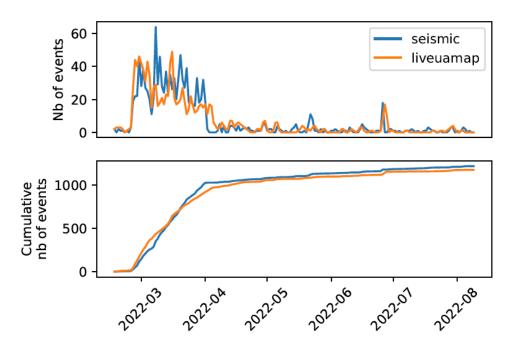
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov

Timeline and key events detected


- Ca. 2 explosions/day
 from guarries/mines
- Average of 28 explosions day after the invasion and before the main withdrawal

Detections vs reported attacks

- Live universal awareness map (liveuamap.com)
- Uses AI webcrawlers to gather reports in Ukraine
- Fact checked by analysts and published online
- Can compare our detections to reports from this region



http://liveuamap.com

Detections vs reported

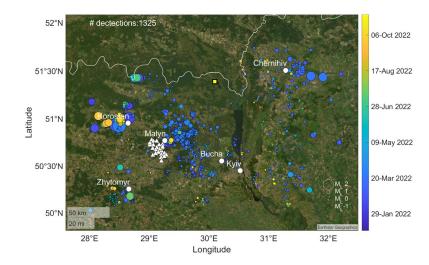
- NORSAR detections generally match number of reported attacks
- Reports at the start of the invasion outnumber detections
- Number of seismic detections overtakes number of reported attacks
- Neither reports nor detections
 are comprehensive

Challenges & opportunities

Reported attacks are not comprehensive

- We do not automatically detect all explosions
- Explosions can be
 - Too far away
 - Too small
 - Simultaneous with complex signals
- We do observe more than is reported
- The Malin array shows what can be achieved by deploying a network of seismic sensors to a conflict zones
- Future opportunity for rapid deployments: seismic and infrasound

- W Russian-controlled Ukrainian Territory before February 24
- 📰 Assessed Russian Advances in Ukraine
- C Assessed Russian-controlled Ukrainian Territory
- 🛄 Claimed Ukrainian Counteroffensives
- 📖 Reported Ukrainian Partisan Warfare
- 📜 Claimed Russian Control over Ukrainian Territory



Source: understandingwar.org - Institute for the Study of War

Summary

- More information than ever is available for conflict monitoring
- Deciphering the truth remains a challenge
- Technology and data can help provide the objectivity required
- Having a network of seismic sensors (such as the Malin array) in an active conflict zone is unprecedented.
- We have demonstrated for the first time the level of monitoring that can be achieved in an active conflict zone using seismic data
- Deploying seismic and infrasound sensors in conflict zones would significantly boost our monitoring capabilities

Acknowledgements

Staff at the Ukrainian national data centre for the continued operation of the Malin station

NORSAR colleagues: Bettina Goertz-Allmann, Andreas Köhler, Quentin Brissaud, Johannes Schweitzer & Tormod Kværna all contributed to this work

