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Setup and Installation

First you need to install the dplyr package:

install.packages("dplyr")

Then load it:

library(dplyr)

You can see some great, detailed introductions and tutorials in the vignettes:

browseVignettes("dplyr")

Cleaning Your Data

United Nations voting data

The UN voting data comes from this page- it is otherwise entirely unchanged. You can download it as:

load(url("http://varianceexplained.org/courses/WS1015/files/undata-213.RData"))

This loads the variables from the RData file into your workspace. What variable is it? You can use ls() to
find what variables you currently have loaded:

ls()

## [1] "x"

Whatever you do, do not try printing x! It is too big for R to print, and this will crash it! You can, however,
display some basic summaries of it:

dim(x)

## [1] 1024539 20

You can even view it like a spreadsheet (it won’t show the whole thing):

View(x)

The dplyr package provides a way to change x’s behavior so that if we accidentally print it, it won’t ruin our
day. This is the tbl_df class:
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x <- tbl_df(x)
class(x)

## [1] "tbl_df" "tbl" "data.frame"

x

## Source: local data frame [1,024,539 x 20]
##
## rcid session date unres vote ccode uniquename
## 1 3 1 1946-01-01 "R/1/66" 1 2 "United States of America"
## 2 3 1 1946-01-01 "R/1/66" 3 20 "Canada"
## 3 3 1 1946-01-01 "R/1/66" 9 31 "Bahamas"
## 4 3 1 1946-01-01 "R/1/66" 1 40 "Cuba"
## 5 3 1 1946-01-01 "R/1/66" 1 41 "Haiti"
## 6 3 1 1946-01-01 "R/1/66" 1 42 "Dominican Republic"
## 7 3 1 1946-01-01 "R/1/66" 9 51 "Jamaica"
## 8 3 1 1946-01-01 "R/1/66" 9 52 "Trinidad and Tobago"
## 9 3 1 1946-01-01 "R/1/66" 9 53 "Barbados"
## 10 3 1 1946-01-01 "R/1/66" 9 54 "Dominica"
## .. ... ... ... ... ... ... ...
## Variables not shown: voetenoldcode (int), voetenname (AsIs),
## voetenshortcode (AsIs), cowshortcode (AsIs), cowcode (int), cowlongname
## (AsIs), aclpcode (int), wdicode (AsIs), imfcode (int), politycode (int),
## bankscode (int), dpicode (AsIs), uncode (int)

Notice that it cuts o� after a certain number of columns, and also a certain number of rows. However, it
otherwise works just like a data.frame:

head(x$rcid)

## [1] 3 3 3 3 3 3

head(x$session)

## [1] 1 1 1 1 1 1

Looking at the data’s structure

Now, let’s look at the code book, which describes each of these columns. It can be downloaded from this
page. Some of the things it shows are:

• rcid: Roll call vote ID: each of these identifies one vote
• session: One United Nations session: a year
• unres: a UN resolution (there might be multiple votes per resolution)
• vote: Coded vote:

– 1 = Yes
– 2 = Abstain
– 3 = No
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– 8 = Absent
– 9 = Not a member

• uniqueName: the name of the country

Everything else is lots and lots of other ways of describing countries. For us, these are not important.

We can find out a bit more about the columns using summary:

summary(x)

## rcid session date unres
## Min. : 3 Min. : 1.00 Length:1024539 Length:1024539
## 1st Qu.:1303 1st Qu.:26.00 Class :AsIs Class :AsIs
## Median :2603 Median :38.00 Mode :character Mode :character
## Mean :2653 Mean :36.74
## 3rd Qu.:3910 3rd Qu.:49.00
## Max. :9056 Max. :67.00
##
## vote ccode uniquename voetenoldcode
## Min. :1.000 Min. : 2.0 Length:1024539 Min. : 2.0
## 1st Qu.:1.000 1st Qu.:290.0 Class :AsIs 1st Qu.:290.0
## Median :1.000 Median :452.0 Mode :character Median :452.0
## Mean :3.658 Mean :469.8 Mean :470.1
## 3rd Qu.:8.000 3rd Qu.:680.0 3rd Qu.:680.0
## Max. :9.000 Max. :990.0 Max. :990.0
##
## voetenname voetenshortcode cowshortcode cowcode
## Length:1024539 Length:1024539 Length:1024539 Min. : 2.0
## Class :AsIs Class :AsIs Class :AsIs 1st Qu.:290.0
## Mode :character Mode :character Mode :character Median :452.0
## Mean :469.8
## 3rd Qu.:680.0
## Max. :990.0
##
## cowlongname aclpcode wdicode imfcode
## Length:1024539 Min. : 1.0 Length:1024539 Min. :111.0
## Class :AsIs 1st Qu.: 49.0 Class :AsIs 1st Qu.:299.0
## Mode :character Median : 97.0 Mode :character Median :576.0
## Mean : 97.5 Mean :550.3
## 3rd Qu.:146.0 3rd Qu.:734.0
## Max. :199.0 Max. :968.0
## NA�s :26055 NA�s :51096
## politycode bankscode dpicode uncode
## Min. : 2.0 Min. : 10.0 Length:1024539 Min. : 4.0
## 1st Qu.:290.0 1st Qu.: 302.0 Class :AsIs 1st Qu.:208.0
## Median :452.0 Median : 660.0 Mode :character Median :428.0
## Mean :469.8 Mean : 647.9 Mean :430.2
## 3rd Qu.:680.0 3rd Qu.: 986.2 3rd Qu.:646.0
## Max. :990.0 Max. :1300.0 Max. :894.0
## NA�s :46899 NA�s :33435

We can see how the roll call ID di�ers from the UN resolutions (turns out there can be more than one vote
per resolution) by using length and unique:
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length(unique(x$rcid))

## [1] 5211

length(unique(x$unres))

## [1] 5043

dplyr: selecting columns

dplyr provides functions for manipulating our data. We mentioned before that there are some columns we
dont care about. dplyr provides the select function to extract the columns we want:

select(x, rcid, session, date)

## Source: local data frame [1,024,539 x 3]
##
## rcid session date
## 1 3 1 1946-01-01
## 2 3 1 1946-01-01
## 3 3 1 1946-01-01
## 4 3 1 1946-01-01
## 5 3 1 1946-01-01
## 6 3 1 1946-01-01
## 7 3 1 1946-01-01
## 8 3 1 1946-01-01
## 9 3 1 1946-01-01
## 10 3 1 1946-01-01
## .. ... ... ...

select(x, rcid, session, date, unres, vote, uniquename)

## Source: local data frame [1,024,539 x 6]
##
## rcid session date unres vote uniquename
## 1 3 1 1946-01-01 "R/1/66" 1 "United States of America"
## 2 3 1 1946-01-01 "R/1/66" 3 "Canada"
## 3 3 1 1946-01-01 "R/1/66" 9 "Bahamas"
## 4 3 1 1946-01-01 "R/1/66" 1 "Cuba"
## 5 3 1 1946-01-01 "R/1/66" 1 "Haiti"
## 6 3 1 1946-01-01 "R/1/66" 1 "Dominican Republic"
## 7 3 1 1946-01-01 "R/1/66" 9 "Jamaica"
## 8 3 1 1946-01-01 "R/1/66" 9 "Trinidad and Tobago"
## 9 3 1 1946-01-01 "R/1/66" 9 "Barbados"
## 10 3 1 1946-01-01 "R/1/66" 9 "Dominica"
## .. ... ... ... ... ... ...

You can also select multiple consecutive columns using ::
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select(x, rcid:uniquename)

## Source: local data frame [1,024,539 x 7]
##
## rcid session date unres vote ccode uniquename
## 1 3 1 1946-01-01 "R/1/66" 1 2 "United States of America"
## 2 3 1 1946-01-01 "R/1/66" 3 20 "Canada"
## 3 3 1 1946-01-01 "R/1/66" 9 31 "Bahamas"
## 4 3 1 1946-01-01 "R/1/66" 1 40 "Cuba"
## 5 3 1 1946-01-01 "R/1/66" 1 41 "Haiti"
## 6 3 1 1946-01-01 "R/1/66" 1 42 "Dominican Republic"
## 7 3 1 1946-01-01 "R/1/66" 9 51 "Jamaica"
## 8 3 1 1946-01-01 "R/1/66" 9 52 "Trinidad and Tobago"
## 9 3 1 1946-01-01 "R/1/66" 9 53 "Barbados"
## 10 3 1 1946-01-01 "R/1/66" 9 54 "Dominica"
## .. ... ... ... ... ... ... ...

select(x, rcid:vote, uniquename)

## Source: local data frame [1,024,539 x 6]
##
## rcid session date unres vote uniquename
## 1 3 1 1946-01-01 "R/1/66" 1 "United States of America"
## 2 3 1 1946-01-01 "R/1/66" 3 "Canada"
## 3 3 1 1946-01-01 "R/1/66" 9 "Bahamas"
## 4 3 1 1946-01-01 "R/1/66" 1 "Cuba"
## 5 3 1 1946-01-01 "R/1/66" 1 "Haiti"
## 6 3 1 1946-01-01 "R/1/66" 1 "Dominican Republic"
## 7 3 1 1946-01-01 "R/1/66" 9 "Jamaica"
## 8 3 1 1946-01-01 "R/1/66" 9 "Trinidad and Tobago"
## 9 3 1 1946-01-01 "R/1/66" 9 "Barbados"
## 10 3 1 1946-01-01 "R/1/66" 9 "Dominica"
## .. ... ... ... ... ... ...

select(x, rcid:vote, country = uniquename)

## Source: local data frame [1,024,539 x 6]
##
## rcid session date unres vote country
## 1 3 1 1946-01-01 "R/1/66" 1 "United States of America"
## 2 3 1 1946-01-01 "R/1/66" 3 "Canada"
## 3 3 1 1946-01-01 "R/1/66" 9 "Bahamas"
## 4 3 1 1946-01-01 "R/1/66" 1 "Cuba"
## 5 3 1 1946-01-01 "R/1/66" 1 "Haiti"
## 6 3 1 1946-01-01 "R/1/66" 1 "Dominican Republic"
## 7 3 1 1946-01-01 "R/1/66" 9 "Jamaica"
## 8 3 1 1946-01-01 "R/1/66" 9 "Trinidad and Tobago"
## 9 3 1 1946-01-01 "R/1/66" 9 "Barbados"
## 10 3 1 1946-01-01 "R/1/66" 9 "Dominica"
## .. ... ... ... ... ... ...

or can remove specific columns with -:
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select(x, -rcid, -date, -session, -ccode)

## Source: local data frame [1,024,539 x 16]
##
## unres vote uniquename voetenoldcode
## 1 "R/1/66" 1 "United States of America" 2
## 2 "R/1/66" 3 "Canada" 20
## 3 "R/1/66" 9 "Bahamas" 31
## 4 "R/1/66" 1 "Cuba" 40
## 5 "R/1/66" 1 "Haiti" 41
## 6 "R/1/66" 1 "Dominican Republic" 42
## 7 "R/1/66" 9 "Jamaica" 51
## 8 "R/1/66" 9 "Trinidad and Tobago" 52
## 9 "R/1/66" 9 "Barbados" 53
## 10 "R/1/66" 9 "Dominica" 54
## .. ... ... ... ...
## Variables not shown: voetenname (AsIs), voetenshortcode (AsIs),
## cowshortcode (AsIs), cowcode (int), cowlongname (AsIs), aclpcode (int),
## wdicode (AsIs), imfcode (int), politycode (int), bankscode (int),
## dpicode (AsIs), uncode (int)

The %>% operator:

Notice that the first argument to select is our data. That is true of all dplyr’s functions. If we want to
perform multiple operations, this becomes a hassle, because we’re nesting function calls within function calls.
But dplyr provides another way to write it:

x %>% select(rcid:vote, country = uniquename)

## Source: local data frame [1,024,539 x 6]
##
## rcid session date unres vote country
## 1 3 1 1946-01-01 "R/1/66" 1 "United States of America"
## 2 3 1 1946-01-01 "R/1/66" 3 "Canada"
## 3 3 1 1946-01-01 "R/1/66" 9 "Bahamas"
## 4 3 1 1946-01-01 "R/1/66" 1 "Cuba"
## 5 3 1 1946-01-01 "R/1/66" 1 "Haiti"
## 6 3 1 1946-01-01 "R/1/66" 1 "Dominican Republic"
## 7 3 1 1946-01-01 "R/1/66" 9 "Jamaica"
## 8 3 1 1946-01-01 "R/1/66" 9 "Trinidad and Tobago"
## 9 3 1 1946-01-01 "R/1/66" 9 "Barbados"
## 10 3 1 1946-01-01 "R/1/66" 9 "Dominica"
## .. ... ... ... ... ... ...

The %>% operator, which is typically pronounced “then”, lets us pipe together multiple steps of an analysis.
But it’s nothing more than a simple conversion:

a %>% f(b, c)
# becomes

f(a, b, c)
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a %>% f(b) %>% g(c, d, e)
# becomes

g(f(a, b), c, d, e)

Many data analyses consist of these consecutive operations. This makes the use of %>% very natural. So from
now on we’ll write them like:

x %>% select(rcid:vote, country = uniquename)

Filter: removing rows based on a condition

Let’s say we don’t care about the Abstain or Absent votes. We can filter them out using another dplyr
function, filter:

x %>% select(rcid:vote, country = uniquename) %>%
filter(vote < 8)

## Source: local data frame [699,744 x 6]
##
## rcid session date unres vote country
## 1 3 1 1946-01-01 "R/1/66" 1 "United States of America"
## 2 3 1 1946-01-01 "R/1/66" 3 "Canada"
## 3 3 1 1946-01-01 "R/1/66" 1 "Cuba"
## 4 3 1 1946-01-01 "R/1/66" 1 "Haiti"
## 5 3 1 1946-01-01 "R/1/66" 1 "Dominican Republic"
## 6 3 1 1946-01-01 "R/1/66" 1 "Mexico"
## 7 3 1 1946-01-01 "R/1/66" 1 "Guatemala"
## 8 3 1 1946-01-01 "R/1/66" 1 "Honduras"
## 9 3 1 1946-01-01 "R/1/66" 1 "El Salvador"
## 10 3 1 1946-01-01 "R/1/66" 1 "Nicaragua"
## .. ... ... ... ... ... ...

Recall that this is just the same as:

filter(select(x, rcid:vote, country = uniquename), vote < 8)

## Source: local data frame [699,744 x 6]
##
## rcid session date unres vote country
## 1 3 1 1946-01-01 "R/1/66" 1 "United States of America"
## 2 3 1 1946-01-01 "R/1/66" 3 "Canada"
## 3 3 1 1946-01-01 "R/1/66" 1 "Cuba"
## 4 3 1 1946-01-01 "R/1/66" 1 "Haiti"
## 5 3 1 1946-01-01 "R/1/66" 1 "Dominican Republic"
## 6 3 1 1946-01-01 "R/1/66" 1 "Mexico"
## 7 3 1 1946-01-01 "R/1/66" 1 "Guatemala"
## 8 3 1 1946-01-01 "R/1/66" 1 "Honduras"
## 9 3 1 1946-01-01 "R/1/66" 1 "El Salvador"
## 10 3 1 1946-01-01 "R/1/66" 1 "Nicaragua"
## .. ... ... ... ... ... ...

But it is already more readable.
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Mutate: changing columns or adding new ones

Right now, votes are represented as 1 (Yes), 2 (Abstain), 3 (No). Let’s turn them into a factor.

votes <- c("Yes", "Abstain", "No")
x %>% select(rcid:vote, country = uniquename) %>%

filter(vote < 8) %>%
mutate(vote = factor(votes[vote]))

## Source: local data frame [699,744 x 6]
##
## rcid session date unres vote country
## 1 3 1 1946-01-01 "R/1/66" Yes "United States of America"
## 2 3 1 1946-01-01 "R/1/66" No "Canada"
## 3 3 1 1946-01-01 "R/1/66" Yes "Cuba"
## 4 3 1 1946-01-01 "R/1/66" Yes "Haiti"
## 5 3 1 1946-01-01 "R/1/66" Yes "Dominican Republic"
## 6 3 1 1946-01-01 "R/1/66" Yes "Mexico"
## 7 3 1 1946-01-01 "R/1/66" Yes "Guatemala"
## 8 3 1 1946-01-01 "R/1/66" Yes "Honduras"
## 9 3 1 1946-01-01 "R/1/66" Yes "El Salvador"
## 10 3 1 1946-01-01 "R/1/66" Yes "Nicaragua"
## .. ... ... ... ... ... ...

Secondly, you might be bothered that the country name, and the UN resolution, have quotes around them.
The stringr package provides a function, str_replace, to replace letters in a string with another letter.

library(stringr)

x %>% select(rcid:vote, country = uniquename) %>%
filter(vote < 8) %>%
mutate(vote = factor(votes[vote]),

country = str_replace(country, �"�, ��))

## Source: local data frame [699,744 x 6]
##
## rcid session date unres vote country
## 1 3 1 1946-01-01 "R/1/66" Yes United States of America"
## 2 3 1 1946-01-01 "R/1/66" No Canada"
## 3 3 1 1946-01-01 "R/1/66" Yes Cuba"
## 4 3 1 1946-01-01 "R/1/66" Yes Haiti"
## 5 3 1 1946-01-01 "R/1/66" Yes Dominican Republic"
## 6 3 1 1946-01-01 "R/1/66" Yes Mexico"
## 7 3 1 1946-01-01 "R/1/66" Yes Guatemala"
## 8 3 1 1946-01-01 "R/1/66" Yes Honduras"
## 9 3 1 1946-01-01 "R/1/66" Yes El Salvador"
## 10 3 1 1946-01-01 "R/1/66" Yes Nicaragua"
## .. ... ... ... ... ... ...

Dividing date into year/month/day with tidyr’s separate
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install.packages(tidyr)

Right now, year, month and day are combined in the same variable, which limits the operations we can
perform with them. Let’s try separating them, using dplyr’s separate operation.

library(tidyr)

x %>% select(rcid:vote, country = uniquename) %>% filter(vote < 8) %>%
mutate(vote = factor(votes[vote]), country = gsub(�"�, ��, country)) %>%
separate(date, c("year", "month", "day"))

## Source: local data frame [699,744 x 8]
##
## rcid session year month day unres vote country
## 1 3 1 1946 01 01 "R/1/66" Yes United States of America
## 2 3 1 1946 01 01 "R/1/66" No Canada
## 3 3 1 1946 01 01 "R/1/66" Yes Cuba
## 4 3 1 1946 01 01 "R/1/66" Yes Haiti
## 5 3 1 1946 01 01 "R/1/66" Yes Dominican Republic
## 6 3 1 1946 01 01 "R/1/66" Yes Mexico
## 7 3 1 1946 01 01 "R/1/66" Yes Guatemala
## 8 3 1 1946 01 01 "R/1/66" Yes Honduras
## 9 3 1 1946 01 01 "R/1/66" Yes El Salvador
## 10 3 1 1946 01 01 "R/1/66" Yes Nicaragua
## .. ... ... ... ... ... ... ... ...

Right now, year, month and day are all character vectors. We want them to be numbers. That’s handled by
the convert argument of separate. This time, let’s save it into a data frame called votes:

votes <- x %>% select(rcid:vote, country = uniquename) %>%
filter(vote < 8) %>%
mutate(vote = factor(votes[vote]), country = gsub(�"�, ��, country)) %>%
separate(date, c("year", "month", "day"), convert = TRUE)

This will be the final version of our votes data- we’ve processed the columns and given them reasonable
names. Now we can get to the actually interesting operations.

Exploratory Data Analysis

Now that we have the data in the format we want, we can start actually exploring it to answer questions.

Grouping and Summarizing

An essential operation in data science is the “split-apply-combine” pattern (described here). This breaks up
your data into smaller subgroups, performs some analysis on them, and then recombines the results.

This operation by itself doesn’t do anything except record, inside the votes table, that we’re grouping by
that variable:
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votes %>% group_by(year)

## Source: local data frame [699,744 x 8]
## Groups: year
##
## rcid session year month day unres vote country
## 1 3 1 1946 1 1 "R/1/66" Yes United States of America
## 2 3 1 1946 1 1 "R/1/66" No Canada
## 3 3 1 1946 1 1 "R/1/66" Yes Cuba
## 4 3 1 1946 1 1 "R/1/66" Yes Haiti
## 5 3 1 1946 1 1 "R/1/66" Yes Dominican Republic
## 6 3 1 1946 1 1 "R/1/66" Yes Mexico
## 7 3 1 1946 1 1 "R/1/66" Yes Guatemala
## 8 3 1 1946 1 1 "R/1/66" Yes Honduras
## 9 3 1 1946 1 1 "R/1/66" Yes El Salvador
## 10 3 1 1946 1 1 "R/1/66" Yes Nicaragua
## .. ... ... ... ... ... ... ... ...

But when we apply the summarize operation later, that operation takes that grouping variable into account,
and performs summaries within each year:

votesumm <- votes %>% group_by(year) %>%
summarize(numvotes = n())

votesumm

## Source: local data frame [66 x 2]
##
## year numvotes
## 1 1946 2143
## 2 1947 2039
## 3 1948 3454
## 4 1949 5700
## 5 1950 2911
## 6 1951 402
## 7 1952 4082
## 8 1953 1537
## 9 1954 1788
## 10 1955 2169
## .. ... ...

Notice there is now one line per year (the original group), containing a new variable, numvotes, with the
number of votes in that year.

To see why this might be useful, try using ggplot2 to make a graph of votes per year:

library(ggplot2)
ggplot(votesumm, aes(year, numvotes)) + geom_line()
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You can see that summarizing within each group makes it easy to produce graphs like these. But that’s a
pretty simple plot. Let’s collect more information per year, and plot that. For starters, we could see how the
proportion of countries that vote “Yes” on a resolution (a sort of measure of “general agreement”) changes
from year to year.

votesumm <- votes %>% group_by(year) %>%
summarize(numvotes = n(), yes = mean(vote == "Yes"))

ggplot(votesumm, aes(year, yes)) + geom_line()
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Throw in a trend line with geom_smooth:

ggplot(votesumm, aes(year, yes)) + geom_line() + geom_smooth()
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Now, that’s about as interesting as we can get while grouping by year. Let’s get more interesting and group
within years and countries. Do this by adding a second variable to the group_by

votesumm <- votes %>% group_by(year, country) %>%
summarize(numvotes = n(), yes = mean(vote == "Yes"))

Notice that there is now one row for each year-country pair.

What countries are there to work with? Some of them may have names we’re not used to. Here’s a trick to
visualize them:

sort(unique(votesumm$country))

## [1] "Afghanistan" "Albania"
## [3] "Algeria" "Andorra"
## [5] "Angola" "Antigua & Barbuda"
## [7] "Argentina" "Armenia"
## [9] "Australia" "Austria"
## [11] "Azerbaijan" "Bahamas"
## [13] "Bahrain" "Bangladesh"
## [15] "Barbados" "Belarus"
## [17] "Belgium" "Belize"
## [19] "Benin" "Bhutan"
## [21] "Bolivia" "Bosnia and Herzegovina"
## [23] "Botswana" "Brazil"
## [25] "Brunei Darussalam" "Bulgaria"
## [27] "Burkina Faso" "Burundi"
## [29] "Cambodia" "Cameroon"
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## [31] "Canada" "Cape Verde"
## [33] "Central African Republic" "Chad"
## [35] "Chile" "China"
## [37] "Colombia" "Comoros"
## [39] "Congo" "Costa Rica"
## [41] "Cote d�Ivoire" "Croatia"
## [43] "Cuba" "Cyprus"
## [45] "Cyprus (old)" "Czech Republic"
## [47] "Czechoslovakia" "Democratic Republic of the Congo"
## [49] "Denmark" "Djibouti"
## [51] "Dominica" "Dominican Republic"
## [53] "East Timor" "Ecuador"
## [55] "Egypt" "El Salvador"
## [57] "Equatorial Guinea" "Eritrea"
## [59] "Estonia" "Ethiopia"
## [61] "Ethiopia (new)" "Fiji"
## [63] "Finland" "France"
## [65] "Gabon" "Gambia"
## [67] "Georgia" "Germany"
## [69] "Germany, East" "Germany, West"
## [71] "Ghana" "Greece"
## [73] "Grenada" "Guatemala"
## [75] "Guinea" "Guinea-Bissau"
## [77] "Guyana" "Haiti"
## [79] "Honduras" "Hungary"
## [81] "Iceland" "India"
## [83] "Indonesia" "Iran"
## [85] "Iraq" "Ireland"
## [87] "Israel" "Italy"
## [89] "Jamaica" "Japan"
## [91] "Jordan" "Kazakhstan"
## [93] "Kenya" "Kiribati"
## [95] "Kuwait" "Kyrgyzstan"
## [97] "Laos" "Latvia"
## [99] "Lebanon" "Lesotho"
## [101] "Liberia" "Libya"
## [103] "Liechtenstein" "Lithuania"
## [105] "Luxembourg" "Macedonia"
## [107] "Madagascar" "Malawi"
## [109] "Malaysia" "Maldives"
## [111] "Mali" "Malta"
## [113] "Marshall Islands" "Mauritania"
## [115] "Mauritius" "Mexico"
## [117] "Micronesia, Federated States of" "Moldova"
## [119] "Monaco" "Mongolia"
## [121] "Montenegro" "Morocco"
## [123] "Mozambique" "Myanmar"
## [125] "Namibia" "Nauru"
## [127] "Nepal" "Netherlands"
## [129] "New Zealand" "Nicaragua"
## [131] "Niger" "Nigeria"
## [133] "North Korea" "Norway"
## [135] "Oman" "Pakistan"
## [137] "Pakistan (old)" "Palau"
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## [139] "Panama" "Papua New Guinea"
## [141] "Paraguay" "Peru"
## [143] "Philippines" "Poland"
## [145] "Portugal" "Qatar"
## [147] "Romania" "Russian Federation"
## [149] "Rwanda" "Samoa"
## [151] "San Marino" "Sao Tome and Principe"
## [153] "Saudi Arabia" "Senegal"
## [155] "Serbia" "Serbia and Montenegro"
## [157] "Seychelles" "Sierra Leone"
## [159] "Singapore" "Slovakia"
## [161] "Slovenia" "Solomon Islands"
## [163] "Somalia" "South Africa"
## [165] "South Korea" "South Sudan"
## [167] "Spain" "Sri Lanka"
## [169] "St. Kitts and Nevis" "St. Lucia"
## [171] "St. Vincent and the Grenadines" "Sudan"
## [173] "Suriname" "Swaziland"
## [175] "Sweden" "Switzerland"
## [177] "Syria" "Taiwan"
## [179] "Tajikistan" "Tanzania"
## [181] "Thailand" "Togo"
## [183] "Tonga" "Trinidad and Tobago"
## [185] "Tunisia" "Turkey"
## [187] "Turkmenistan" "Tuvalu"
## [189] "U.S.S.R." "Uganda"
## [191] "Ukraine" "United Arab Emirates"
## [193] "United Kingdom" "United States of America"
## [195] "Uruguay" "Uzbekistan"
## [197] "Vanuatu" "Venezuela"
## [199] "Viet Nam" "Yemen"
## [201] "Yemen Arab Republic" "Yemen PDR (South)"
## [203] "Yugoslavia" "Zambia"
## [205] "Zanzibar" "Zimbabwe"

Let’s grab out a few that might interest us. (Note that the “U.S.S.R.” turned into the “Russian Federation”
starting in 1992).

interesting_countries <- c("United States of America", "U.S.S.R.", "United Kingdom", "Russian Federation")
interesting <- votesumm %>% filter(country %in% interesting_countries)

Now that we’ve filtered for these countries, we can plot their “% Yes” metric separately over time. Here’s two
ways (of many) you can do this- separating countries by color and by facets (sub-plots):

ggplot(interesting, aes(year, yes, color = country)) + geom_point() +
geom_smooth()
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ggplot(interesting, aes(year, yes)) + geom_point() +
geom_smooth() +
facet_wrap(~ country)
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We can already pick out and start interpreting trends based on these four plots, of how each countries level of
agreement with the UN’s resolutions changed over time.

Tomorrow we’ll continue diving into this data as an example of a tidy data analysis. We’ll learn:

• How to merge this data with a di�erent dataset that describes the topic and importance of each
resolution, and create graphs based on these topics

• How to turn un-tidy data into tidy data using tidyr
• How to perform an analysis, such as a regression or spline, within each country using the broom package
• How to cluster countries by similarity in voting patterns, and construct heatmaps and trees
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